

Lecture 8: Deep Generative & Energy Models

Efstratios Gavves

Lecture overview

- Generative models: motivation
- Energy-based models
- Hopfield networks
- Boltzmann machines
- Deep belief networks
- Modern energy models

Discriminative models: summary

- So far we have explored discriminative models mainly
- Given an <u>individual</u> input x predict
 - the correct label (classification)
 - the correct score (regression)
- Learning by maximizing the probability of <u>individual</u> classifications/regressions

Prediction: "bicycle"

Prediction: "8.7" on IMDb

Generative models: main idea

- Discriminative learning does not model data jointly
- Rephrasing: we want to know what is the distribution of data
- \circ For instance: we want to know how likely is x_a
 - \circ Or if it is more likely than x_b

Our observations

"What are the chances this is a bicycle"?

Why/when to learn a distribution?

- \circ Density estimation: estimate the probability of x
- Sampling: generate new plausible x
 - *E.g.*, model-based reinforcement learning

 \circ Structure/representation learning: learn good features of x unsupervised

Why/when to learn a distribution?

Generative models to pretrain for downstream tasks

- o Generative models to ensure generalization
 - *E.g.*, model-based reinforcement learning

Semi-supervised learning

Simulations

The world as a distribution

In data space: all possible data x (a.k.a. "The world")

In the distribution space

Generative models: main challenges

 \circ We are interested in <u>parametric</u> models from a family of models ${\mathcal M}$

- How to pick the right family of models \mathcal{M} ?
- How to know which θ from \mathcal{M} is a good one?
- How to learn/optimize our models from family \mathcal{M} ?

Properties for modelling distributions

- We want to learn distributions $p_{\theta}(x)$
- Our model must therefore have the following properties
 - Non-negativity: $p_{\theta}(x) \ge 0 \ \forall \ x$
 - Probabilities of all events must sum up to 1: $\int_x p_{\theta}(x) dx = 1$
- Summing up to 1 (normalization) makes sure predictions improve relatively
 - Model cannot trivially get better scores by predicting higher numbers
 - The pie remains the same → model forced to make non-trivial improvements

Parameterizing models for distributions: non-negativity

- Our model must therefore have the following properties
 - Non-negativity: $p_{\theta}(x) \ge 0 \forall x$
 - Probabilities of all events must sum up to 1: $\int_x p_{\theta}(x) dx = 1$
- Easy to obtain non-negativity
 - Consider: $g_{\theta}(x) = f_{\theta}^{2}(x)$ where f_{θ} is a neural network
 - $or g_{\theta}(x) = \exp(f_{\theta}(x))$
 - But they do not sum up to 1

Energy-based models for distributions

Normalize by the total volume of the function

$$p_{\theta}(\mathbf{x}) = \frac{1}{\text{volume}(g_{\theta})} g_{\theta}(\mathbf{x}) = \frac{1}{\int_{\mathbf{x}} g_{\theta}(\mathbf{x}) d\mathbf{x}} g_{\theta}(\mathbf{x})$$

- In simple words, equivalent to normalizing [3, 1, 4] as $\frac{1}{3+1+4}$ [3, 1, 4]
- Examples

•
$$g_{\theta=(\mu,\sigma)}(x) = \exp(-(x-\mu)^2/2\sigma^2) \Rightarrow \text{Volume}(g_{\theta}) = \sqrt{2\pi\sigma^2} \Rightarrow \text{Gaussian}$$

$$g_{\theta=\lambda}(x) = \exp(-\lambda x) \Rightarrow \text{Volume}(g_{\theta}) = \frac{1}{\lambda} \Rightarrow \text{Exponential}$$

- Must find convenient g_{θ} to be able to compute the integral analytically
 - Otherwise we cannot make sure of valid probabilities

Why is learning a distribution hard?

- The integrals mean that learning distributions becomes harder with scale
- Think of 300x400 color images with [0, 256) color range
 - The number of possible images x is $256^{3\cdot300\cdot400}$
 - In principle must assign a probability to all of them

- While easy to *define* a family of models, we got a $\int_x g_{\theta}(x) dx$
 - Not always easy how to sample (needed for evaluating)
 - Not always easy how to optimize (needed for training)
 - Not always data efficient (long training times)
 - Not always sample efficient (many samples needed for accuracy)

Why/when not to learn a distribution?

- "One should solve the [classification] problem directly and never solve a more general [and harder] problem as an intermediate step."
 V. Vapnik, father of SVMs.
- Generative models to be preferred
 - when probabilities are important
 - when you got no human annotations and want to learn features
 - when you want to generalize to (many) downstream tasks
 - when the answer to your question is not: "more data"
- If you have a very specific classification task and lots of data
 - no need to make things complicated

A map of generative models

